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The paper presents an inverse kinematic model for a centrifuge motion simulator used to
verify newly defined absolute acceleration profiles. The modelling is concerned with a human
training centrifuge with three degrees of freedom. The values of kinematic parameters have
been obtained for this three-jointed manipulator. Validation of the developed model has been
performed by comparing the results obtained from the centrifuge motion simulator with the
results of numerical simulations. The simulation revealed that the inverse kinematic model
enabled calculation of the angular displacement, velocity and acceleration of the links that
are needed for the given linear acceleration of the simulator cabin.
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1. Introduction

High-performance aircraft pilots as well as civilian aerobatic pilots are exposed to high linear
accelerations during flight (Newman, 2015). In order to properly prepare for work in this environ-
ment, pilots are evaluated and trained to increase their acceleration tolerance level (Wojtkowiak,
1991). This training is carried out in a specially designed centrifuge motion simulator or, so-
called, human training centrifuge (HTC) (Dančuo et al., 2012b; Truszczyński and Kowalczuk,
2012). From the standpoint of classical mechanics, the task of the HTC is to achieve accelera-
tions through rotations around three axes that simulate the load the pilot is exposed to in a real
flight. This type of simulator makes it possible to create high and prolonged linear accelerations.
Moreover, the centrifuge provides a safe ground-based platform to train pilots, especially in the
field of increasing pilot’s awareness about unwanted effects of accelerations, such as G-induced
loss of consciousness or spatial disorientation. In addition, the HTC is an important tool for
researchers to understand the changes taking place in human physiology during accelerative
stress.

In this paper, a dynamic flight simulator has been considered, namely the HTC shown in
Fig. 1, manufactured by the AMST-Systemtechnik GmbH (Austria), located at the Military
Institute of Aviation Medicine (Warsaw, Poland).

The gondola/cabin of the centrifuge is assembled on an eight-meter-long arm and allowed
longitudinal accelerations (in the direction from pilot’s head to foot) to be achieved in the range
from −3g to +16g (g is the Earth’s gravitational acceleration) with the maximal onset rate
of acceleration (G-onset rate) at n = 14.5g/s. Additionally, the gyroscopic suspension of the
cabin allowed it to achieve transversal and lateral accelerations in the range of ±10g and ±6g,
respectively.
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Fig. 1. Dynamic flight simulator – human training centrifuge HTC-07

2. Problem formulation

Within the centrifuge simulator, there is a pre-programmed standard open loop mode that con-
tains predefined nonlinear profiles of the absolute acceleration in the centre of the cabin. In
these profiles, which are independent for each of the three axes of the pilot’s head-fixed coor-
dinate system, a positive or negative acceleration that is constant for given periods of time is
determined. When this acceleration profile is created, the angular accelerations in the indivi-
dual links of the simulator motion system may be exceeded (Table 1). There is also a problem
concerning hypogravity (< 1g), which cannot be obtained in this simulator. In that case, the
simulator software reports an error, which is then eliminated using a trial and error method.
This problem makes it difficult to define more complex acceleration profiles that should not be
tested on a real device. The solution to this problem should be sought in the inverse kinematics
of the HTC’s motion system. The inverse kinematics of the centrifuge motion simulator will be
based on calculating the angular position, velocity and acceleration of each motion system link.
This approach will make it possible to indicate maximum values of angular acceleration that
are necessary to achieve a given linear acceleration of the simulator cabin. In this way, how the
position of individual links of the motion system should change over time in order to achieve
the desired movement of the cabin will be determined.

3. Physical model of the HTC simulator

A centrifuge motion simulator is modelled as a three-joint manipulator (Fig. 2) with rotational
axes, where the pilot’s head is considered to be the end-effector (Crosbie, 1988). The model
consists of three links: arm, ring and cabin (Fig. 2).
The arm rotation around the vertical axis is the main motion that achieves the desired

acceleration force. The arm carries a gimballed cabin system with two rotational axes providing
pitch and roll capabilities. The task of the roll and pitch axes is to direct the acceleration force
into the desired direction. The pilot’s head is placed in the intersection of the cabin roll and
pitch axes. The arm rotation angle is denoted by ψA, the roll ring rotation angle by ϕR and
the pitch cabin rotation angle by θC . The centrifuge has the following parameters: arm length
dA = 8m, roll and pitch axis rotation range of ±360◦. Other parameters of the simulator motion
system kinematics are shown in Table 1.
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Fig. 2. A physical model of the centrifuge motion simulator HTC-07

Table 1. Motion capabilities of the HTC-07 simulator (AMST-Systemtechnik GmbH, 2011)

Parameter zc-axis yc-axis xc-axis

Maximum acceleration rate [g/s] 14.5 6 10

Maximum angular acceleration [rad/s2] 2.82 8 5

4. Kinematics of the centrifuge motion simulator

The forward kinematics that is related to the simulator motion system geometry is used
to calculate the linear acceleration components of the end-effector (the pilot’s head), whe-
re GH = [GxH , GyH , GzH ]

T with respect to the centrifuge variables ψA, φR and θC (the-
se angles are determined in the next Section). Thus, for a given joint coordinate vector
q = [ψ̈A, ψ̇A, θC , θ̈C , φR, φ̈R]

T, the forward kinematics equation must be solved as follows

GH = f(q) (4.1)

where f is a nonlinear, continuous and differentiable function. The simulator kinematic model
can be derived by different methods, such as the Lagrange equation (Siciliano et al., 2009; Wu
et al., 2010), the Newton-Euler method (Grotjahn et al., 2004; Tsai, 1999) and the virtual work
principle (Wu et al., 2009, 2013; Zhao and Gao, 2009). The method based on the Lagrange
formulation is conceptually simple and systematic. The method based on the Newton-Euler for-
mulation yields a model in a recursive form. It is composed of forward computation of velocities
and accelerations of each link, followed by backward computation of forces and moments in
each joint (Wu et al., 2010). This algorithm is computationally more efficient because it exploits
the typically open structure of the manipulator kinematic chain (Djuric et al., 2012; Sicilia-
no et al., 2009). On the other hand, the Newton-Euler procedure is very difficult to use in an
advanced control application because of the closed structure, as the expense of calculation is
considerably high (Gherman et al., 2012). Despite this, the Newton-Euler equations of motion
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are used to model the kinematics of centrifuge motion simulator due to the fact that these equ-
ations incorporate all accelerations that act on the individual links of the motion system (Chen
and Repperger, 1996; Dančuo et al., 2012a; Kvrgic et al., 2014; Vidaković et al., 2012). During
kinematic modelling of the centrifuge, the small elastic deformation of the centrifuge links is
neglected.

4.1. Coordinate frames and matrices determining relations for centrifuge links

This Section defines coordinate frames for the centrifuge links (Fig. 2) and matrices that
determine their relations. The centrifuge links and their coordinate frames are denoted by using
the Euler angle convention. The centrifuge base coordinates are denoted by Ox0y0z0 (the Earth-
-fixed system), the arm coordinates by AxAyAzA (link 1), the roll ring coordinates by RxRyRzR
(link 2), the cabin coordinates by CxCyCzC (link 3) and the pilot head-fixed coordinates system
by HxHyHzH . The pilot’s head is placed in the intersection of the cabin roll and pitch axes,
therefore xC = xH , yC = yH , and zC = zH . To determine the mutual position of the defined
coordinate systems, the following angles are used (Fig. 2):
• ψA – the yaw angle between the x0-axis and the yA-axis. This angle, enlarged by 90◦,
provides coverage of the y0-axis with the yA-axis, in this way defining the position of
the Earth-fixed coordinate system Ox0y0z0 relative to the arm-fixed coordinate system
AxAyAzA (link 1),

• φR – the roll angle between the zA-axis and the zP -axis. This angle determines the position
of the arm-fixed coordinate system AxAyAzA (link 1) relative to the ring-fixed coordinate
system RxRyRzR (link 2),

• θC – the pitch angle between the zP -axis and the zC-axis. This angle determines the
position of the ring-fixed coordinate system RxRyRzR (link 2) relative to the cabin-fixed
coordinate system CxCyCzC (link 3).

To derive the kinematic equations for the motion simulator, the matrices for the relation
between the centrifuge link coordinate frames are defined. These transformation matrices are
obtained for the Z → Y → X rotation convention of the coordinate systems in the following
way:
— L0/A – matrix for transformation from the Earth-fixed coordinate system Ox0y0z0 to the
arm-fixed coordinate system AxAyAzA

L0/A = Lzr(90
◦)Lz0(−ψA) (4.2)

where

Lz0(−ψA) =







cosψA − sinψA 0
sinψA cosψA 0
0 0 1






Lzr(90

◦) =







0 −1 0
1 0 0
0 0 1






(4.3)

— Lxr(φR) – matrix for transformation from the arm-fixed coordinate system AxAyAzA to the
ring-fixed coordinate system RxRyRzR

Lxr(φR) =







1 0 0
0 cosφR sinφR
0 − sinφR cosφR






(4.4)

— Lyp(θC) – matrix for transformation from the ring-fixed coordinate system RxRyRzR to the
cabin-fixed coordinate system CxCyCzC

Lyp(θC) =







cos θC 0 − sin θC
0 1 0
sin θC 0 cos θC






(4.5)
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The matrix L0/C for transformation from the cabin-fixed coordinate system, CxCyCzC , to the
Earth-fixed coordinate system, Ox0y0z0, is determined by multiplying transformation matrices
(4.2)-(4.5), in the following way

L0/C = Lyp(θC)Lxr(φR)L0/A (4.6)

By using the convenient shorthand notation c = cos and s = sin, the components of the trans-
formation matrix (4.6) L0/A = Lzr(90

◦)Lz0(−ψA) (4.2) become the following

L0/C =







sψAcθC + cψAsφRsθC cψAcφR −sψAsθC + cψAsφRcθC
−cψAcθC + sψAsφRsθC sψAcφR cψAsθC + sψAsφRcθC

cφRsθC −sφR cφRcθC






(4.7)

Assuming that ψA = 0, for further calculations matrix (4.7) is reduced to the form

L0/C(ψA=0) =







sinφR sin θC cosφR sinφR cos θC
− cos θC 0 sin θC
cosφR sin θC − sinφR cosφR cos θC






(4.8)

On the basis of these transformational matrices, the equations of forward kinematics that relate
to the velocities and accelerations of the links and the end-effector-pilot’s head are developed in
the next Section.

5. Linear acceleration acting on the pilot’s head

The linear acceleration components at the intersection point of the roll (link 2) and pitch (link 3)
axes are: the normal (radial) an, tangential at and gravitational g accelerations (Fig. 3). From
these accelerations, the orthogonal components Gx0, Gy0, and Gz0 for the normal, tangential
and vertical accelerations, respectively, are calculated as follows






Gx0
Gy0
Gz0






=
1

g







−an
−at
g






=







dAψ̇
2
A/g

−dAψ̈A/g
1






(5.1)

where dA is the simulator arm length, ψ̇A and ψ̈A are angular velocity and acceleration of the
arm (link 1), respectively.
The link angles φR and θC , angular velocity ψ̇A and acceleration ψ̈A of the arm define the

orthogonal components GxC , GyC and GzC of the resultant vector GC that are experienced by
the pilot. Based on equations (4.8) and (5.1), the resultant vector GC experienced by the pilot
can be found from

[GxC , GyC , GzC ]
T = L−10/C(ψA=0)[Gx0, Gy0, Gz0]

T (5.2)

The transverse GxC , lateral GyC and longitudinal GzC components of the acceleration GC that
act on the pilot’s head are

GxC = sin θC(Gx0 sinφR +Gz0 cosφR)−Gy0 cos θC
GyC = Gx0 cosφR −Gz0 sinφR
GzC = cos θC(Gx0 sinφR +Gz0 cosφR) +Gy0 sin θC

(5.3)

Equations (5.3) develop the inverse kinematics algorithm which determines the link angles that
are required to generate a desired trajectory of the cabin-centrifuge and accelerations in the
centrifuge axes.
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Fig. 3. The acceleration components at the intersection point of the roll and pitch axes

6. An inverse kinematics of the cabin simulator

The inverse kinematics is defined as the problem of determining a set of appropriate joint
configurations for which the end effector (the pilot’s head) moves to desired positions as smoothly,
rapidly and as accurately as possible. The inverse kinematics of the centrifuge motion system is
first based on calculating the angular displacement, velocity and acceleration of the links that
are needed for the given linear acceleration of the simulator cabin. Then, taking into account the
limitations of the motion system (Table 1), it is checked whether this system can achieve such
accelerations. If it cannot, the maximum successive link angular accelerations that the motion
system can achieve are calculated. The inverse kinematics for the centrifuge motion simulator
can be described by the relationship

[ψ̈A, ψ̇A, θC , θ̈C , φR, φ̈R]
T = f−1[GxH , GyH , GzH ]

T (6.1)

where f−1 is a nonlinear, continuous and differentiable function that performs the inverse trans-
formation to the function f , (4.1). There are two distinct methods for solving Eq. (6.1) of inverse
kinematics, namely iterative and analytical. The iterative method gives the solution by solving
an approximation of the system, and by updating the system with the output from the solver
for each iteration until it converges. The analytical method solves the whole system at once;
however, the complexity of it arises when large chains of joints attempt to be solved. The most
prominent among iterative methods are based on the Jacobian matrix, which describes the non-
linear and configuration dependent transformation between velocities in the joint configuration
coordinates and the task spaces. There are several versions of Jacobian-based methods, such as
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the Jacobian Transpose (Wolovich and Elliott, 1984), damped least squares (Wampler, 1986),
damped least squares with singular value decomposition (Wampler, 1986), selectively damped
least squares (Buss and Kim, 2005) and several extensions (Baillieul, 1985; Nakamura and Ha-
nafusa, 1986). An iterative method can be also viewed as an optimization task solved with
general-purpose methods (neural networks (Tejomurtula and Kak, 1999) and genetic algorithms
(Nearchou, 1998)), but those approaches are usually computationally ineffective.
Due to small chains of joints (a centrifuge simulator is a three-joint manipulator), direct and

analytical computations of inverse kinematics are chosen. Based on the acceleration vector GC
components, Eqs. (5.3), the link angles in each joint in the system are derived. To determine
the angular accelerations and velocities of the arm (link 1), ring (link 2) and cabin (link 3), the
following calculation algorithm for the inverse kinematics is used (Kvrgic et al., 2014).

Step 1: Determination of the arm angular acceleration ψ̇A. The angular acceleration ψ̇A is
derived from Eq. (5.1) that describes linear acceleration components at the intersection point of
the roll and pitch axes (Fig. 3). The resultant acceleration of this point is a sum of the normal an,
tangential at, and gravitational g acceleration. This acceleration is as follows

a2A = d
2
Aψ̇
4
A + d

2
Aψ̈
2
A + g

2 (6.2)

For a positive angular acceleration ψ̈A, the angular velocity ψ̇A in the i-th moment of time is
equal to

ψ̇A(i) = ψ̇A(i− 1) + ψ̈A(i)dt (6.3)

By substituting (6.3) to equation (6.2), the resultant acceleration takes the form

a2A(i) = d
2
A[ψ̇A(i− 1) + ψ̈A(i)dt]4 + d2Aψ̈2A(i) + g2 (6.4)

After calculations have been performed, this equation becomes

a2A(i) = d
2
A[ψ̇
4
A(i− 1) + 4ψ̇3A(i− 1)ψ̈A(i)dt + 6ψ̇2A(i− 1)ψ̈2A(i)dt2] + d2Aψ̈2A(i) + g2 (6.5)

and then

a2A(i) − g2

d2A
= ψ̇4A(i− 1) + 4ψ̇3A(i− 1)ψ̈A(i)dt + 6ψ̇2A(i− 1)ψ̈2A(i)dt2 + ψ̈2A(i) (6.6)

By reducing equation (6.6) to the form of a quadratic equation

[1 + 6ψ̇2A(i− 1)dt2]ψ̈2A(i) + 4ψ̇3A(i− 1)ψ̈A(i)dt + ψ̇4A(i− 1)−
a2A(i) − g2

d2A
= 0 (6.7)

it is possible to obtain its solution in the form of two roots

ψ̈A(i) =
−2ψ̇3A(i− 1) dt±

√

−2ψ̇6A(i− 1)dt2 − ψ̇4A(i− 1) + [1 + 6ψ̇2A(i− 1)dt2]k(i)
1 + 6ψ̇2A(i− 1)dt2

(6.8)

where

k(i) =
a2A(i)− g2

d2A
(6.9)

Kvrgic et al. (2014) noted that equation (6.8) is valid for the movement that has a positive
acceleration onset. For a negative acceleration onset, the discriminant −2ψ̇6A(i− 1)dt2 − ψ̇4A(i−
1) + [1 + 6ψ̇2A(i− 1)dt2]k(i) is mostly negative, which means that this equation cannot be used
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directly. Vidaković et al. (2012, 2013) proposed a solution in the form of a Jacobi elliptic function,
which describes the arm angular velocity as

ψ̇A(t) =
4
√
ksn(

4
√
kt+

4
√
kC1,−1) (6.10)

where k is constant for every interpolation period of time and is given by Eq. (6.9), sn is a
Jacobian elliptic function and C1 is the constant obtained from the value of angular velocity
from the previous interpolation period.
After equation (6.10) has been developed in Taylor series expansions of the Jacobi elliptic

function (Wrigge, 1981), it becomes

ψ̇A(i) =
4

√

k(i)
(

t1(i)−
t51(i)

10
+
t91(i)

120
−
11t131 (i)

15600
+
211t171 (i)

3536000

)

(6.11)

where t1(i) =
4
√

k(i)(dt +C1).
Equation (6.11) describes the arm angular velocity, ψ̇A(i), for each i-th interpolation period

of time. The angular acceleration, ψ̈A(i), of the arm for every interpolation period of time is
calculated as

ψ̈A(i) =
ψ̇A(i+ 1)− dotψA(i)

dt
(6.12)

Another approach to solve the problem of calculation of the negative acceleration was proposed
by Liwen et al. (2015). The researchers generated both a trapezoidal G-load curve and three-
-axis G-load commands using a real-time motion planning algorithm with two G-dimensional
interpolation. Dančuo et al. (2018) and Vidaković et al. (2012) indicated that equation (6.8)
could be also solved numerically for a small time increment dt→ 0.

Step 2: Determination of the angular velocity ψ̇A of the arm (6.3) and accelerations components
(5.1) at the intersection point of the roll and pitch axes (Fig. 3).

Step 3: Determination of the roll ring angle φR based on equation (5.3)2, which describes the
lateral acceleration GyC . Expressing sinφR and cosφR by using the tangent function

cosφR =
1

√

1 + tan2 φR
sinφR =

tan φR
√

1 + tan2 φR
(6.13)

and by substituting these functions to equation (5.3)2, multiplying both sides by
√

1 + tan2 φR,
and then raising to the power, the following expression is obtained

G2x0 − 2Gx0Gz0 tanφR +G2z0 tan2 φR = G2yC (1 + tan
2 φR) (6.14)

After the next transformation, Eq. (6.14) is reduced to the form

(G2z0 −G2yC ) tan
2 φR − 2Gx0Gz0 tanφR +G2x0 −G2yC = 0 (6.15)

for which the roots are the following

tan φR =
2Gx0 ±

√

4G2x0 − 4(G2z0 −G2yC )(G
2
x0 −G2yC )

2(G2z0 −G2yC )
(6.16)

By substituting Gz0 = 1 to Eq. (6.16), and then performing manipulations, the following result
is obtained

tan φR =
Gx0 ±GyC

√

1 +G2x0 −G2yC
1−G2yC

(6.17)
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For G2x0 + 1  G2yC , the roll ring angle is equal to

φR = arctan
Gx0 +GyC

√

1−G2yC +G
2
x0

1−G2yC
(6.18)

otherwise

φR = arctan
Gx0
1−G2yC

(6.19)

If GyC < 0, and G
2
yC > 1, the roll ring angle is equal to φR = φR + π. The angular velocity φ̇R

and acceleration φ̈R of the ring (link 2) are determined as follows

φ̇R(i) =
φR(i) − φR(i− 1)

dt
φ̈R(i) =

φ̇R(i)− φ̇R(i− 1)
dt

(6.20)

Step 4: Completion of the pitch cabin angle θC calculation. This angle can be derived from
equation (5.3)1 that describes the lateral acceleration GxC or based on Eq. (5.3)3 which defines
the longitudinal acceleration GzC . Equations (5.3)1 and (5.3)3 indicate that it is not possible
to obtain simultaneously the desired values of GxC and GzC acceleration, even if they do not
exceed the limit ranges (Table 1). Therefore, to determine the pitch cabin angle, Eq. (5.3)1 is
used. For the known lateral acceleration GxC , using similar substitution (6.13) for the pitch
cabin angle θC , equation (5.3)1 takes the form

GxC =
tan θC

√

1 + tan2 θC
(Gx0 sinφR +Gz0 cosφR)−Gy0

1
√

1 + tan2 θC
(6.21)

Performing analogous transformations (6.14) and (6.15) as for the angle of tilting the ring, the
above equation takes the form

G2xC (1 + tan
2 θC) = tan

2 θC(Gx0 sinφR +Gz0 cosφR)
2

− 2Gy0 tan θC(Gx0 sinφR +Gz0 cosφR) +G2y0
(6.22)

By substituting Gx0 sinφR +Gz0 cosφR = d, and then performing some manipulations, a qua-
dratic equation is obtained

(d2 −G2xC ) tan
2 θC − 2Gy0d tan θC +G2y0 +G2xC = 0 (6.23)

for which the roots are the following

tan θC =
Gy0d±GxC

√

d2 −G2y0 −G2xC
d2 −G2xC

(6.24)

For (d2 +G2y0)  G2xC , the pitch cabin angle θC is equal to

θC = arctan
Gy0d+GxC

√

d2 +G2y0 −G2xC
d2 −G2xC

(6.25)

otherwise, if (d2+G2y0) < G2xC , it is not possible to obtain the desired transverse acceleration GxC .
Then equation (6.21) takes the form

θC = arctan
Gy0

d−G2xC/d
(6.26)
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The angular velocity θ̇C and acceleration of the cabin θ̈C (link 3) are determined as follows

θ̇C(i) =
θC(i)− θC(i− 1)

dt
θ̈C(i) =

θ̇C(i)− θ̇C(i− 1)
dt

(6.27)

A centrifuge is capable of simulating all three load components, but simulating a pure GzC
profile becomes a problem due to motor limitation. A pure GzC training profile is a profile
without the transverse GxC and lateral GyC loads. The transverse load GxC in the centrifuge
is a result of the tangential acceleration at (Fig. 3) and has a large value at the beginning
and at the end of planetary arm motion. The greater the tangential acceleration is, the greater
is the GxC acceleration. The emergence of the large tangential acceleration at decreases the
angular velocity of the arm motion and has negative effects on the overall centrifuge perfor-
mance (Dančuo et al., 2013). These effects are minimized by adjusting the pitch cabin angle by
θC = arctan(at/

√

a2n + 1).

Equations (6.3), (6.8), (6.18), (6.20), (6.25) and (6.27) compose a system of 8 ordinary
differential equations that describe an inverse kinematics model of the HTC motion simulator.
Based on these equations, the centrifuge kinematic parameters: ψA, ψ̇A, ψ̈A, φR, φ̇R, φ̈R, θC ,
θ̇C , and θ̈C are calculated in three phases, according to the algorithm described by Kvrgic et al.
(2014).

7. Verification of the inverse kinematics model

The presented inverse kinematics model of the HTC motion simulator has been tested using
numerical calculations. The simulation was performed for the GxC , GyC and GzC acceleration
forces profile (Fig. 5, solid line), which was generated by the software of the HTC control system.
This acceleration forces profile changes as follows:

• starting from 1g with G-onset rate n = 0.2g/s up to the baseline level (1.41g),
• constant baseline level at 1.41g,
• increase of the acceleration with G-onset rate n = 3g/s up to 6g,
• constant acceleration at 6g,
• decrease of the acceleration with G-onset rate n = −3g/s up to the baseline level (1.41g).

Additionally, for calculations the following data, namely dA = 8m, g = 9.81m/s
2, time step

dt = 0.005 s and Matlab/Simulink MathWorks software, have been used. Figures 4-7 present the
results of numerical simulations (dotted line) plotted together with the corresponding parameters
which were recorded during operation of the HTC simulator (solid line). The figures show:

• angular velocity ψ̇A and acceleration ψ̈A of the arm (link 1) (Fig. 4),
• GxC , GyC , and GzC acceleration forces profile (Fig. 5),
• angle φR, angular velocity φ̇R and acceleration φ̈R of the roll ring (link 2) (Fig. 6),
• angle θC , angular velocity θ̇C and acceleration θ̈C of the pitch cabin (link 3) (Fig. 7).

The calculated angular velocity of the arm ψ̇A (dotted line on the upper plot in the Fig. 4),
which is responsible for generating the centripetal acceleration an, largely covers the envelope of
the angular velocity obtained from the HTC control system (solid line). The difference between
the two curves of ψ̇A (Fig. 4, model vs. HTC) is noticeable only during a decrease in the
acceleration from 6g to 1.41g with G-onset rate n = −3g/s (Fig. 5). The maximum of this
difference is approximately 0.2 rad/s. A similar difference was found in the study by Vidaković
et al. (2012).

In Fig. 5, the GxH , GyH , and GzH components of the absolute acceleration force obtained
by equations (5.3) are given. The curves are very close to each other, except for the phase of
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Fig. 4. Angular velocity and acceleration of the centrifuge arm

Fig. 5. Components of the absolute acceleration
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deceleration (negative angular acceleration ψ̈A shown in Fig. 4), when a small difference has
appeared. The maximum error of the absolute acceleration does not exceed the value of 0.2g
(GzH ).

From Fig. 6, it is clear that the presented angle φR, angular velocity φ̇R and acceleration φ̈R of
the roll ring (link 2) provide good results. A difference between the desired (HTC) and calculated
(model) angle φR is minimal. The angle φR is derived from equation (6.17) and depends on Gx0
acceleration (5.1). Thus, the observed difference in the calculated angle φR comes from angular
velocity of the arm ψ̇A (Fig. 4) which affects Gx0 acceleration. Moreover, according to equation
(6.20), the angular velocity φ̇R, and acceleration φ̈R of the roll ring are calculated on the basis
of the angle φR. Therefore, these parameters curves (model vs. HTC) are also different.

Fig. 6. Kinematic parameters of the roll ring: angle, angular velocity and acceleration

Figure 7 shows the angle θC , angular velocity θ̇C and acceleration θ̈C of the pitch cabin
(link 3) obtained by equations (6.25), and (6.27), respectively. A difference between the desired
(solid line) and calculated (dotted line) angle θC appears only for the phase of deceleration
(negative angular acceleration ψ̈A, shown in Fig. 4) of the arm. Similar to the kinematic para-
meters calculated for the ring (link 2), the observed difference in the calculated angle θC (6.25)
depends on the centrifuge arm movement (angular acceleration of the arm ψ̈A, which affects Gy0
acceleration (5.1)). The angular velocity θ̇C and acceleration θ̈C of the roll ring (Fig. 7) are
calculated based on equation (6.27). Therefore, the differences between two curves (model vs.
HTC) of these parameters are easily observed.

The obtained kinematic model is not completely accurate, but the calculated link accelera-
tions, velocities and angles do not differ much from their actual values. It is a concern, especially
for maximum and minimum values indicating whether the limit ranges (Table 1) have not been
exceeded to achieve the desired values of the acceleration vector GC components. In order to
eliminate the differences between the desired (HTC) and calculated (model) parameters for the
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Fig. 7. Kinematic parameters of the pitch cabin: angle, angular velocity and acceleration

movement having a negative acceleration onset, Kvrgic et al. (2014) proposed a simple solution
in which the values of the positive G-onset rate n of the same magnitude are reversed.

8. Conclusions

The purpose of the work is to present a way to solve the problem of correctly defining complex
acceleration profiles that are recreated by a centrifuge motion simulator. The proposed solution,
in the form of an inverse kinematic model of the centrifuge, indicates not only the exceeded
limit values of the parameters, but also their changes over time. The simulation has revealed
that the developed inverse kinematic model makes it possible to calculate the angular displace-
ment, velocity and acceleration of the links, which is needed for the given linear acceleration of
the simulator cabin. Simulation performed in Simulink proved the correctness of the presented
expressions for angular displacement, velocity and acceleration of the centrifuge links. The pre-
sented algorithm achieved the predefined profile of absolute acceleration in the centrifuge cabin
where the onset rate of the absolute acceleration is constant. The developed model of the inverse
kinematics can be used for computer simulation of motion of the centrifuge simulator system.
Through an overview of the behaviour of the model under various operating conditions, it is
possible to predict how a real system will behave.
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